China Hot selling High Torque Brushed DC Planetary Gear Motor Gear Reduction Motor Geared with Planetary Gearbox gear cycle

Product Description

Product Description

R370M is a mature motor platform with multiple models. These motors are usually used in card-reader machine, printer, photocopier, etc.
The following parameters for your reference, we could customize motor for your applications.

Parameters:

Rated Voltage Rated Speed Rated Current Rated Torque Reduction Ratio
24V 33RPM 0.2A 3kgf.cm 1:167

Drawing:

Performance Curve:

Company Profile

Qualification Certificates:
 

Key Customers:

Exhibition:

FAQ

Q: Can I visit your factory before we place the order?
A: Yes. You are welcome to visit our factory.

Q: Do you accept customization?
A: Of course. We have a strong design team. Any problems will get our technical  answer.

Q: How soon can I get the price?
A: Usually we quote within 24 hours after getting your inquiry (Except weekend and holidays). If you are very urgent to get the price, please 
contact us by email or other  way so that we can quote.

Q: What’s the delivery time of samples?
A: 1-3 weeks.

Q: What’s the delivery time of mass production?
A: Normally one month. It depends on your order quantity or other special situation.

Q: What’s your payment terms?
A: T/T, Paypal, Western Union, and other payment ways is available. Please contact  us which payment ways you need before placing the order. Payment terms: 30%-50% deposit, the balance before shipment.

Q: What’s the shipping way?
A: We accept shipping way by Express (DHL, UPS, Fedex, etc), by Sea and other    shipping way. Please contact us if you need other shipping 
way before shipment.
 

 

 

 

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools
Operating Speed: High Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Structure and Working Principle: Brushless
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

epicylic gear

How do you calculate the gear ratio involving sun, planet, and ring gears?

The gear ratio in a planetary gear system can be calculated by considering the number of teeth on the sun gear, planet gears, and ring gear. The gear ratio determines the relationship between the input speed and the output speed of the system. Here’s how you can calculate the gear ratio:

  • Step 1: Count the Teeth:

Count the number of teeth on the sun gear (S), the planet gears (P), and the ring gear (R). These numbers represent the respective gear’s tooth count.

  • Step 2: Determine the Gear Arrangement:

Identify the gear arrangement. In a simple planetary gear system, the sun gear is at the center, surrounded by planet gears, and enclosed by the ring gear.

  • Step 3: Calculate the Gear Ratio:

The gear ratio (GR) can be determined using the formula:

GR = (R + P) / S

Where:

  • R represents the number of teeth on the ring gear
  • P represents the number of teeth on the planet gears (assuming they have the same number of teeth)
  • S represents the number of teeth on the sun gear

The resulting gear ratio represents the speed relationship between the input and output of the planetary gear system. A gear ratio greater than 1 indicates a speed reduction, while a gear ratio less than 1 indicates a speed increase.

It’s important to note that in more complex planetary gear systems, where there are multiple sets of planet gears or additional gears, the calculation of the gear ratio may involve considering multiple gear stages and their respective tooth counts.

In summary, to calculate the gear ratio involving sun, planet, and ring gears, you need to count the teeth on each gear and use the formula (R + P) / S, where R is the number of teeth on the ring gear, P is the number of teeth on the planet gears, and S is the number of teeth on the sun gear. This calculation provides the gear ratio that defines the speed relationship between the input and output of the planetary gear system.

epicylic gear

What are the considerations for lubrication and maintenance of planetary gears?

Proper lubrication and maintenance are crucial for the reliable and efficient operation of planetary gears. Let’s explore the key considerations for lubrication and maintenance:

  • Lubrication:

Effective lubrication is essential to reduce friction, wear, and heat generation in planetary gears. Consider the following aspects:

  • Lubricant Selection:

Choose a lubricant specifically designed for gear systems with the appropriate viscosity and additives to ensure proper film formation and protection against wear. Consult the manufacturer’s recommendations or industry standards for suitable lubricants.

  • Lubricant Contamination:

Prevent contamination of the lubricant by keeping the gear system clean and free from debris, dust, and moisture. Use proper sealing techniques and consider filtration systems to maintain the lubricant’s cleanliness and performance.

  • Lubrication Frequency:

Follow the recommended lubrication intervals provided by the equipment manufacturer. Factors such as operating conditions, load, and temperature can affect the lubrication frequency. Regularly monitor the lubricant condition and conduct oil analysis to determine if lubricant replacement or additional lubrication is required.

  • Maintenance:

Regular maintenance helps ensure the longevity and optimal performance of planetary gears. Consider the following maintenance aspects:

  • Inspection:

Periodically inspect the gear system for signs of wear, damage, misalignment, or abnormal noise. Detecting issues at an early stage allows for timely maintenance and prevents further damage.

  • Alignment:

Proper alignment of the gear components is crucial to distribute the load evenly and prevent premature wear. Regularly check and adjust the gear alignment as per the manufacturer’s specifications.

  • Torque and Load:

Ensure that the gear system operates within the recommended torque and load limits. Excessive loads can lead to increased wear and decreased gear life. Consider the application requirements and ensure the gear system is appropriately sized and rated.

  • Temperature:

Monitor the operating temperature of the gear system. Excessive heat can degrade the lubricant’s performance and accelerate wear. Proper cooling mechanisms, such as fans or heat exchangers, may be required in high-temperature environments.

In summary, proper lubrication and maintenance are essential for planetary gears. Choose suitable lubricants, prevent contamination, follow recommended lubrication intervals, inspect for wear, ensure proper alignment, consider torque and load limits, monitor operating temperature, and conduct regular maintenance. By adhering to these considerations, you can prolong the lifespan, enhance performance, and minimize the risk of gear failure in planetary gear systems.

epicylic gear

Can you explain the unique design and structure of planetary gears?

Planetary gears possess a unique design and structure that sets them apart from other gear systems. Let’s explore the distinctive features of the design and structure of planetary gears:

  • Components:

A planetary gear system consists of three main components: the sun gear, planet gears, and a ring gear. The sun gear is located at the center and is typically driven by an input source such as a motor or engine. The planet gears are gears that surround the sun gear and are connected to a carrier or arm. The ring gear is the outermost gear and meshes with the planet gears.

  • Internal Gear Meshing:

One of the distinguishing features of planetary gears is their internal gear meshing. Unlike other gear systems where the gears mesh externally, the teeth of the sun gear, planet gears, and ring gear are located on the inside surfaces. This arrangement allows for a compact and space-efficient design.

  • Orbiting Motion:

In planetary gears, the planet gears exhibit both rotational and orbital motion. While they rotate on their own axes, they also orbit around the sun gear. This combination of rotational and orbital movement enables the gear system to achieve different gear ratios and torque transmission.

  • Central Sun Gear:

The presence of a central sun gear is another characteristic of planetary gears. The sun gear is positioned at the center of the gear arrangement and serves as the primary driver for the overall gear operation. It receives the input power and transmits it to the planet gears.

  • Versatile Gear Ratios:

Planetary gears are capable of achieving a wide range of gear ratios. The gear ratio is determined by the relative sizes of the gears and the number of teeth on each gear. By varying the number of teeth on the sun gear, planet gears, and ring gear, different gear ratios can be obtained, providing versatility in speed reduction or amplification.

  • Load Distribution:

The arrangement of multiple planet gears in a planetary gear system helps distribute the load among the gears. This load distribution results in efficient torque transmission and enhanced durability. It also contributes to shock absorption and noise reduction during gear operation.

  • Compact Size:

Planetary gears are known for their compact size. The internal gear meshing and the integration of multiple gear sets within a single system contribute to their space-saving design. The compactness of planetary gears is advantageous in applications where size and weight restrictions are critical.

  • Wide Range of Applications:

Due to their unique design and structural characteristics, planetary gears find applications in various industries and mechanical systems. They are commonly used in automotive transmissions, robotics, aerospace systems, industrial machinery, and more. The ability to achieve different gear ratios, transmit torque efficiently, and operate in compact spaces makes planetary gears versatile in transmitting power.

In summary, the unique design and structure of planetary gears include components such as the sun gear, planet gears, and ring gear, internal gear meshing, orbiting motion of the planet gears, a central sun gear, versatile gear ratios, load distribution, compact size, and wide-ranging applications. These features contribute to the efficiency, versatility, and space-saving nature of planetary gears, making them suitable for various mechanical systems.

China Hot selling High Torque Brushed DC Planetary Gear Motor Gear Reduction Motor Geared with Planetary Gearbox gear cycleChina Hot selling High Torque Brushed DC Planetary Gear Motor Gear Reduction Motor Geared with Planetary Gearbox gear cycle
editor by Dream 2024-04-30